
J
H
E
P
1
0
(
2
0
0
7
)
0
6
9

Published by Institute of Physics Publishing for SISSA

Received: September 5, 2007

Accepted: September 10, 2007

Published: October 17, 2007

A new perspective on DGP gravity

Ruth Gregory,a Nemanja Kaloper,b Robert C. Myerscde and Antonio Padillaf

aCentre for Particle Theory, Durham University,

South Road, Durham, DH1 3LE, U.K.
bDepartment of Physics, University of California,

Davis, CA 95616, U.S.A.
cPerimeter Institute for Theoretical Physics,

Waterloo, ON, N2L 2Y5, Canada
dDepartment of Physics and Astronomy, University of Waterloo,

Waterloo, ON, N2L 3G1, Canada
eKavli Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106-4030, U.S.A.
fSchool of Physics and Astronomy, University Park, University of Nottingham,

Nottingham NG7 2RD, U.K.

E-mail: r.a.w.gregory@durham.ac.uk, kaloper@physics.ucdavis.edu,

rmyers@perimeterinstitute.ca, antonio.padilla@nottingham.ac.uk

Abstract: We examine brane induced gravity on codimension-1 branes, a.k.a DGP grav-

ity, as a theory of five-dimensional gravity containing a certain class of four-dimensional

branes. From this perspective, the model suffers from a number of pathologies which went

unnoticed before. By generalizing the 5D geometry from Minkowski to Schwarzschild, we

find that when the bulk mass is large enough, the brane hits a pressure singularity at

finite radius. Further, on the self-accelerating branch, the five-dimensional energy is un-

bounded from below, implying that the self-accelerating backgrounds are unstable. Even

in an empty Minkowski bulk, standard Euclidean techniques suggest that the spontaneous

nucleation of self-accelerating branes is unsuppressed. If so, quantum effects will strongly

modify any classical intuition about the theory. We also note that unless considered as

Z2-orbifold boundaries, self-accelerating branes correspond to ‘wormhole’ configurations,

which introduces the usual problematic issues associated with wormholes. Altogether these

pathologies present a serious challenge that any proposed UV completion of the DGP model

must overcome.
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1. Introduction

The observed late-time acceleration of our universe [1] presents an enormous puzzle for

theoretical physicists. There has been a great deal of effort invested in the search for a self-

consistent modification of gravity as a way to address this problem, instead of introducing

new matter contributions to Einstein gravity such as the cosmological constant. Perhaps

the most notable examples of this approach are braneworld modifications [2 – 5] and theories

with new scalars disguised as f(R) terms [6]. The brane induced gravity model in 5D

(henceforth refered to as DGP gravity, for short) [3] in particular has received special

attention, mainly because it gave rise to the self -accelerating (SA) backgrounds. These

solutions describe de Sitter cosmology without a nominal cosmological constant, or tension,

on the brane, as have been written down in [7, 8]. They are similar in spirit to the original

inflationary models of Starobinsky, found in higher derivative gravity without cosmological

constant before the full power of inflationary dynamics was realized [9]. At first, the SA

solutions appeared to evade any inconsistencies and in particular, the ghost problem of

the GRS model [10, 11]. However, subsequent investigations demonstrated that a ghost

appears on the SA brane [12, 13]. The appearance of both ghosts and tachyons was

confirmed by the careful analysis of fluctuations around the SA solutions in [14, 15], which

also showed that the normal branch of solutions remain free of ghosts and tachyons. While

the appearance of ghosts and tachyons would seem to present a major problem for the

DGP model, differing views have emerged as to the severity of this pathology [16, 17] — in

particular, it is has been argued that strong coupling phenomena may somehow alter the
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naive picture of instabilities. On the other hand, the exact shock wave analysis revealed

some pathological singularities on the SA branch of solutions even beyond perturbation

theory [18]. It is therefore clear that the issues concerning ghosts and tachyons remain a

major obstacle to working with the DGP model as a reliable and practical description of

our universe.

Most discussions of the DGP gravity to date focussed on the four-dimensional physics

that brane observers might experience. Here we take a different point of view and examine

the DGP model as a theory of five-dimensional Einstein gravity coupled to an unusual

source: the four-dimensional DGP branes. In developing this perspective we uncover a

number of new pathologies, which went unnoticed before.

The first of these are seen by generalizing the 5D geometry from Minkowski to

Schwarzschild. If the bulk mass exceeds a certain critical value, the brane will run into

a pressure singularity at finite radius. Further, it is straightforward to see that on the

SA branch the five-dimensional energy is unbounded from below. Because an SA brane

excises the space where the naked singularity would have been, the remaining spacetime

of negative 5D mass is nonsingular, and we can keep all these solutions in the spectrum of

the theory. This reservoir of negative energies can be accessed by smooth deformations of

the SA vacua, by turning on the radion field which encodes the bulk ADM mass. While

such deformations are not immediately accessible to the gravitational modes on the normal

branch backgrounds alone, since there is no normalizable radion in that case, backgrounds

which contain any number of SA branes will reintroduce this instability.

Going back to a Minkowski bulk, we can use the standard semiclassical techniques

in Euclidean quantum gravity to demonstrate that the mixing between empty 5D space

and SA branes appears to be completely unsuppressed. This result would lead us to

conclude that as long as the theory contains SA brane solutions, 5D Minkowski space

cannot be a good approximation of the (quantum) vacuum of the theory. Of course,

these calculations in the Euclidean path integral are subject to certain ambiguities — as

we will discuss. Finally, we note that unless the DGP branes are considered to be Z2-

orbifold boundaries, the self-accelerating branes are actually ‘wormhole’ configurations.

This will automatically introduce the usual set of problematic issues associated with such

geometries [19].

Our results complement the perturbative exploration of pathologies in the DGP model

from the viewpoint of brane-localized observers, which revealed ghosts and tachyons in

the spectrum of small perturbations about the SA solutions [14, 15, 20, 21]. We un-

cover the present pathologies using the nonperturbative classical theory, which probes

the full nonlinearities of the gravitational theory, in contrast to the perturbative anal-

ysis of [14, 15]. This shows that the nonlinearities, on their own, do not remedy the

perturbative maladies of the model. The present calculations are extremely simple, utiliz-

ing the high degree of symmetry expected to characterize physically relevant backgrounds

for cosmology at the Hubble scales. This simplifies the technical aspects of the work

in contrast to the general perturbative considerations of [14, 15]. The results which we

obtain provide clear and simple examples of how strong coupling effects do not cure

sub-crossover dynamics on their own. Indeed, irrespective of any strong coupling phe-
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nomena, the solutions with arbitrarily negative energies remain accessible to classical dy-

namics, at least in some particular dynamical channels. On the other hand, this also

affirms that in its present form the low energy description better be very sensitive to

higher-derivative, strong coupling corrections if one wants to maintain the belief that

such phenomena may alter our conclusions. We stress that while the pathologies found

here paint a disturbing picture of the DGP model, we cannot rule out the possibility

that this model may have a sensible UV completion. It appears clear, however, that

these pathologies do present a severe challenge for any such proposed UV completion.

While the model at its current stage may motivate the search for a complete theory,

given the severity of the pathologies revealed here as well as the presence of tachyonic

and ghost-like perturbations, it seems premature to use its background solutions, and in

particular the self-accelerating cosmologies, as a basis for constructing any detailed ob-

servational tests, such as those pursued in [22, 23] and many subsequent works. More-

over, our results seem to identify the self-accelerating branes as the source of instabil-

ity. Thus this suggests that if stable UV completions of the DGP model should exist,

they may not allow for self-accelerating branes, altogether invalidating the utility of such

solutions. We note that the perspective and calculations developed here are applicable

more generally in a variety of other settings and may be used as a diagnostic in other

higher dimensional models or braneworld scenarios, of interest as a modified theory of

gravity.

We should mention here a recent interesting work [24], where the authors sought con-

figurations describing transitions from SA branes to N branch solutions, that look like

normal branch bubbles on the SA brane. Such solutions require domain walls separating

different de Sitter phases, and the authors of [24] argued that smooth walls supported by

positive definite field theories may not exist. On this ground, these authors suggested that

perhaps the perturbative ghost of DGP model might be less ominous than one may think.

Now, while these arguments may be questioned, we should stress that our arguments are

completely orthogonal to the investigation of [24], and show that nonperturbative insta-

bilities do exist. Hence, at the level of the semiclassical theory, the ghost of DGP is not

tamed, but comes out with a vengeance.

The paper is organized as follows: section 2 provides a brief overview of the DGP

model. In section 3, we examine the various cosmological solutions of this model where

the bulk spacetime corresponds to the five-dimensional Schwarzschild solution. For a

large enough (positive) mass in the bulk, we show that the brane runs into a pressure

singularity at finite radius. We further point out that on the SA branch, the negative-

mass Schwarzschild subfamily still represent a class of smooth solutions of the DGP

theory, yielding states which have a negative energy from the five-dimensional perspec-

tive. In section 4, we turn to semiclassical calculations describing the nucleation of a

self-accelerating brane in empty 5D Minkowski space. We close with a discussion of our

results in section 5. Appendix A examines the solutions of section 3 in the limit where

the Schwarzschild mass parameter is small and connects this limit with the perturbative

analysis of [14].
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2. The DGP model

The 5D DGP model, as we study it here, is described by the following action:

S = 2M3
5

∫

bulk

√−gR + 4M3
5

∫

brane

√−γK +

∫

brane

√−γ
(

M2
4R− σ + Lmatter

)

(2.1)

where gab is the bulk metric with corresponding Ricci tensor Rab. The brane has induced

metric γµν with corresponding Ricci tensor Rµν . Its extrinsic curvature is given by Kµν =

−1
2Lnγµν , the Lie derivative of the induced metric, with respect to the unit normal na,

pointing into the bulk. For the most part, we will work with the solutions which are

Z2-symmetric about the brane. This may be thought as a simplifying constraint which

focuses our attention on a special class of solutions. Alternatively, it may be that the

brane is actually a Z2-orbifold in which case we would think of this as a boundary of the

five-dimensional spacetime. On a pragmatic level, the Z2-symmetry means we only ever

work with one side of the bulk in the following.

The key feature of the DGP model is the intrinsic curvature term appearing on the

brane. In general, one might think that such a term should be induced on the brane

by matter loop corrections [25 – 27] or finite width effects [28]. However, as we comment

below, the phenomenologically interesting case requires a hierarchically much larger brane

Planck scale M4 than the bulk Planck scale M5 [3], which has not been easy to realize

naturally, and has been questioned on theoretical grounds [29]. In the brane action, we

have explicitly extracted the brane tension σ out of the matter Lagrangian Lmatter. The

tension term can be viewed as encoding the vacuum energy of the brane-localized fields.

Then, the governing equations of motion in the bulk are the vacuum Einstein equations

Gab = Rab −
1

2
Rgab = 0 . (2.2)

The boundary conditions at the brane are simply the Israel junction conditions extended

to the present case:

4M3
5 Kµν + 2M2

4

(

Rµν − 1

6
Rγµν

)

− σ

3
γµν = Tµν − 1

3
T γµν (2.3)

where Tµν ≡ − 2√−γ
∂(

√−γLmatter)
∂γµν . We include it here for generality, although it will vanish

for the solutions which we will consider below.

There are a variety of different approaches to solving the coupled equations (2.2), (2.3).

Here we will first solve the bulk equations and then use the Israel junction conditions to

determine the trajectory of the brane in this bulk. For our purposes, the first step amounts

to choosing a known solution of the five-dimensional vacuum Einstein equations. Of course,

the simplest of these is just five-dimensional Minkowski space:

ds2 = gabdXadXb = −dt2 + dr2 + r2dΩ2
3 . (2.4)

The brane sweeps out a surface in this background at which two copies of the bulk geom-

etry are stitched together (or an orbifold boundary condition is imposed). A simple but

interesting brane geometry to consider is a homogeneous cosmology

ds2 = γµνdxµdxν = −dτ2 + a(τ)2 dΩ2
3 , (2.5)
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Figure 1: Embedding of a de Sitter brane in a flat 5D bulk. The brane world volume is the

hyperboloid in the Minkowski bulk. The normal branch corresponds to keeping the interior of the

hyperboloid, the self-accelerating branch the exterior.

where a(τ) specifies the proper size of the brane as a function of its proper time τ . To

specify the brane’s trajectory or embedding in the background (2.4), we set r = a(τ).

Omitting the details of analysing the Israel conditions (2.3) for this case here1 we just note

that they yield the following interesting vacuum solutions on the brane [7, 8, 30]

a(τ) =
1

H±
cosh(H±τ) (2.6)

where

H± ≡ 1

2
H0

(
√

1 +
4σ∗

H0
± 1

)

. (2.7)

Here we have introduced σ∗ = σ/12M3
5 and H0 = 2M3

5 /M2
4 . These solutions describe de

Sitter geometry on the brane with radius of curvature H−1. As our construction elucidates,

the brane can be viewed as a 4D hyperboloid of the same radius embedded in the 5D

Minkowski bulk (see figure 1), generalizing the inflating domain walls of [31]. The choice

of sign appearing in (2.7) arises because the construction left ambiguous which part of the

bulk spactime was included. Indeed, in the minimal approach, we can treat the brane as a

Z2 orbifold [3], in which case we identify the different sides of the bulk. Then the ‘minus’

sign denotes pasting together two copies of the region interior to the hyperboloid, and the

‘plus’ sign refers to pasting two copies of the exterior.

1It corresponds to the special case µ = 0 of the calculation in the next section.
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The solution with H− is commonly referred to as the normal branch whereas the

solution with H+ is referred to as the self-accelerating branch, a terminology which will

become transparent shortly. The value of H0 = 2M3
5 /M2

4 in (2.7) is typically taken to be

the current Hubble scale. This illustrates vividly the need for an exponential hierarchy

between the Planck scales: given that M4 is set to the observed four-dimensional Planck

scale, M4 ∼ 1019 GeV, to get H0 ∼ 10−33 eV, one must take M5 ∼ 10−3 eV, some thirty

orders of magnitude smaller than M4. One must explain how to generate, and stabilize

against radiative corrections, such a disparate ratio between the two Planck scales.

On the other hand, a new and very interesting feature of the theory is that even for

vanishing tension, the self-accelerating solution gives rise to a de Sitter brane universe

with H = H0. The modification of gravity at large distances enables us to describe an

accelerating universe in the absence of any vacuum energy whatsoever! In contrast, the

normal branch gives rise to a flat Minkowski brane as σ → 0, which may be less interesting

for the phenomenology of an accelerating universe, but may still be a useful testing ground

for other effects of gravity modified at large scales.

Returning to our geometrical picture of the branes as hyperboloids in Minkowski space,

we note that the self-accelerating solution leads to a rather counter-intuitive result. Recall

that in that case we keep the exterior of the hyperboloid. In the absence of the induced

curvature of the brane, this would be consistent with a brane of negative tension. But this

is not the case here. What has happened is that the induced curvature term enables us

to mimic negative tension even when σ > 0. If we cast the brane equations (2.3) in the

conventional form of the Israel junction conditions, we would have

4M3
5 (Kµν − K γµν) = T eff

µν ≡ −2M2
4

(

Rµν − 1

2
Rγµν

)

− σ γµν + Tµν (2.8)

where the effective stress tensor for the brane comes from the variation of the total brane

action, i.e., the third integral in eq. (2.1). Hence the right-hand side of the Israel con-

ditions include the standard contributions coming from the brane tension and the brane

matter, both of which will satisfy the usual positive energy conditions [32] (with positive

σ). However, there is also a geometric contribution, i.e., the Einstein tensor of the intrinsic

metric, which in general will not satisfy any positivity conditions. Note the overall mi-

nus sign in front of this term which arises here because we have put this geometric term

on the matter side (the wrong side) of the equations in eq. (2.8). In particular, for a

brane with a de Sitter geometry, as considered above, this term contributes 6M2
4 H2 γµν

to the effective stress tensor, i.e., this geometric contribution is equivalent to a negative

brane tension σgeometry ≡ −6M2
4 H2. This term comes to dominate on the self-accelerating

branch, for which we may think in terms of the total effective tension being negative,

σeff = σ − 6M2
4 H2

+ = −12M3
5 H+.

As commented above, the effective stress tensor will not in general satisfy any of the

energy conditions typically considered in Einstein gravity [32] because of the geometric

term appearing on the right-hand side of eq. (2.8). Hence one must worry that unusual or

problematic results may arise from the brane and/or excitations of the brane. In partic-

ular, excitations of the brane geometry, e.g., four-dimensional gravitons, may contribute
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negative energies from a five-dimensional perspective. To leading order, this contribu-

tion might be expected to vanish as the gravitons would satisfy (something-like) the four-

dimensional Einstein equations and so their leading contribution to T eff
µν might then vanish.

Of course, this question requires a detailed analysis to take into full account the couplings

between fields on the brane and in the bulk. However, this is precisely the analysis pro-

vided in [14, 33] where it was found that certain perturbations about the self-accelerating

solution are indeed ghost-like, as well as finding other tachyonic modes.

We close here with one final observation. If we relax the Z2 boundary conditions on

the brane, then the conventional interpretation of the SA branch has the brane connecting

two asymptotically flat regions of space. Hence this configuration provides what is widely

known in the relativity literature as a ‘wormhole’. In particular, while implicitly the two

sides of the SA brane are taken to be disjoint Minkowski spaces, there is no reason a

priori why these branes should not be connecting distant locations within the same five-

dimensional space, which makes the brane’s role as a ‘wormhole’ more evident. Hence we

recall that, as has been extensively considered, there is a set of problematic issues inherent

to such wormhole configurations, such as the appearance of closed time-like curves — see,

for example, [19]. We do not consider these issues further here but the wormhole geometry

will have interesting implications in the context of the semiclassical calculations in section 4.

Of course, these problems are eliminated if the DGP branes are actually defined to be Z2-

orbifolds. In such a case, we would think of the brane as a boundary of the five-dimensional

spacetime and there would be no (independent) geometry on the other side.

3. Branes in a Schwarzschild bulk

3.1 Finding solutions

The cosmological solutions above were based on the simplest possible bulk, namely, 5D

Minkowski space (2.4). It is straightforward to extend this procedure to other bulk solutions

with spherical symmetry. In what follows, we apply this procedure to a more interesting

bulk solution, a five-dimensional Schwarzschild black hole:

ds2 = gabdXadXb = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 , (3.1)

where

f(r) = 1 − µ

r2
. (3.2)

Given the 5D action (2.1), the mass is given by [34]

m = 12π2 M3
5 µ . (3.3)

In the context of DGP gravity, the possibility of using this bulk geometry was considered in

passing in [7]. We will examine the corresponding solutions in full detail. A key observation

will be that there is no obstacle to constructing smooth solutions on the SA branch when

the mass (3.3) is arbitrarily negative, because the SA brane excises the naked singularity.

We note that the authors of [12] considered in more detail a special subfamily of SA branes

– 7 –
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in negative mass bulks. By demanding that the brane remains static they inferred a lower

bound on the mass. However such a bound is artificial as it only implies that for a more

negative bulk mass the brane with a fixed tension can’t be static, but it crunches into a

singularity, as we will discuss below.

Let us adopt the same ansatz for the brane geometry and trajectory as above

ds2 = γµνdxµdxν = −dτ2 + a(τ)2 dΩ2
3 . (3.4)

with r = a(τ). To evaluate the Israel junction conditions (2.3), we must first examine the

embedding geometry more carefully. As well as the tangent vectors along the three-sphere,

there is a (future-pointing) time-like tangent vector on the brane which may be expressed

as2

ua =

(

dt

dτ
,
dr

dτ
, 0, 0, 0

)

=

(

1

f(a)

(

f(a) + ȧ2
)1/2

, ȧ, 0, 0, 0

)

, (3.5)

normalized such that u · u = −1. The normal to the brane is given by

na = ǫ

(

ȧ

f(a)
,
(

f(a) + ȧ2
)1/2

, 0, 0, 0

)

, (3.6)

with n · n = +1 and u · n = 0. Here ǫ = ±1, which corresponds to the ambiguity of which

part of the bulk is included in the construction, noted above. With ǫ = −1 (+1), na points

towards the black hole (asymptotic infinity) and we keep the interior (exterior) region.

Now we can evaluate each of the contributions in (2.3). One finds that the extrinsic

curvature is

Kij = −1

2
Lnγij = − ǫ

a

(

f(a) + ȧ2
)1/2

γij (3.7)

where (i, j) indicate directions on the S3. With the brane geometry (3.4), one easily

evaluates the intrinsic curvatures as

Rij −
1

6
Rγij =

(

ȧ2

a2
+

1

a2

)

γij . (3.8)

Evaluating (2.3) for the three-sphere directions yields an expression which we write as

−ǫH0

(

ȧ2

a2
+

f(a)

a2

)1/2

+
ȧ2

a2
+

1

a2
− H0σ

∗ = 0 . (3.9)

To understand this result better, we first re-express it in a form reminiscent of the Fried-

mann equation

ȧ2

a2
+

1

a2
=

H2
0

2
+ H0σ

∗ + ǫ
H2

0

2

(

1 +
4σ∗

H0
− 4µ

H2
0

1

a4

)1/2

(3.10)

a→∞ ≃ H2
0

2
+ H0σ

∗ + ǫ
H2

0

2

(

1 +
4σ∗

H0

)1/2

− ǫ µ

a4

(

1 +
4σ∗

H0

)−1/2

+ . . .

2Implicitly here and in the following, we assume that f(a) > 0, i.e., the brane is outside of the black

hole horizon.

– 8 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
9

where we have used (3.2). In the second line, we have expanded the right-hand side

for large a and we can interpret the result in terms of the standard four-dimensional

Friedmann equation. The first contribution corresponds to that of a cosmological constant.

We recognize this expression as H2
+ for ǫ = +1 and H2

− for ǫ = −1. The next contribution

with a 1/a4 dependence matches that of a radiation gas with a density proportional to ǫ µ

— an effective ‘dark radiation’ that is commonplace in braneworld cosmology [35]. Note

that this ‘holographic’ effect has an unusual character for the SA brane. While a positive

µ induces a positive energy density on the N brane, the effective energy density is negative

on the SA brane [36]. That is, the holographic or four-dimensional interpretation might be

that the SA brane supports some additional ghost-like matter in the µ > 0 background.

Of course, perhaps this is simply another example of the often noted result that the bulk

contributions to the effective stress-energy on the brane [37 – 39] may be negative. A

nonvanishing µ also induces an infinite series of higher order terms proportional to 1/a4n

— many of which would be expected to be negative.

Setting µ = 0, we recover the simple case examined in the previous section and one

can easily verify that eqs. (2.6) and (2.7) give a solution of (3.10). In general, we have no

analytic solutions for (3.10). However to gain intuition for the solutions we can rewrite the

equation as the Hamiltonian constraint of a classical point particle,

ȧ2 + U(a, ǫ, µ) = −1 , (3.11)

moving in an unusual potential:

U(a, ǫ, µ) = −H2
0

2
a2

(

1 +
2σ∗

H0
+ ǫ

(

1 +
4σ∗

H0
− 4µ

H2
0

1

a4

)1/2
)

. (3.12)

The effective potential U(a, ǫ, µ) is plotted in figure 2 for a variety of parameter choices. Let

us first reconsider the special case µ = 0 from this perspective. In this case, the potential

reduces to a simple inverted harmonic potential,

U(a, ǫ, µ = 0) = −H2
± a2 (3.13)

where H− (H+) corresponds to the choice ǫ = −1 (+1). Given that the effective energy

is a fixed negative quantity, the trajectories of interest approach the origin from infinity,

bounce off the potential at amin = 1/H±, defined in figure 2 as the point of intersection of

U(a) with the line U = −1, and then head back to infinity. Of course, this is precisely the

behaviour shown by the analytic solutions (2.7), describing de Sitter spaces on the brane

in global coordinates.

An alternative visualization of the DGP cosmology is given by plotting the solution

as a trajectory in phase space. Caution must be exercised as the phase plot is not that of

an autonomous dynamical system, and hence can display irregularities, nonetheless some

qualitative features are very easily extracted. Explicitly, to get a dimensionless plot, rescale

variables:

t̂ = H0t , â = H0a , µ̂ = H2
0µ , σ̂ = σ∗/H0 (3.14)

– 9 –
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U(a)
a

(-,-)

(-,0)

(-,+)

(+,-)

(+,+)

(+,0)
U = -1

Figure 2: The effective potential U(a, ǫ, µ) describing the brane trajectories in various cases,

classified by the signs of ǫ, µ. The black dot indicates the singular radius acrit which demarcates

the ǫ = ±1 solutions with positive bulk mass, and may be accessible by evolution depending on the

precise position of the line U = −1, which can shift up and down as a function of the parameters.

and define the phase coordinates as

X =
1

â
Y =

˙̂a

â
. (3.15)

The Friedmann equation (and hence the trajectory in phase space) coming from the square

of (3.9) now becomes

(X2 + Y 2)2 − (1 + 2σ̂)(X2 + Y 2) + σ̂2 + µ̂X4 = 0 (3.16)

A set of typical plots (for the SA branch) is shown in figure 3. It is easy to see that in the

absence of a bulk black hole, the trajectory is a circle in the (X,Y ) plane, whose radius is

fixed by the brane tension. We also see that for very small black hole masses, the cosmology

is very slightly perturbed, with the SA brane being repelled by positive mass black holes.

Finally, we also notice that for large (positive) black hole masses, the trajectories exhibit

pathologies, which will be described in section 3.2.

It is interesting to note that if µ → 0, we can regard our µ 6= 0 solutions as a small

perturbation of the µ = 0 case. Hence in this limit, one should be able to relate our

new solutions to the fluctuation analysis [14, 33]. We leave the details of this analysis

to appendix A but observe that one finds that the perturbation introduced by small µ is

related to the homogeneous mode of the ‘radion’. In particular, on the SA branch, this

radion mode is normalizable and so describes a dynamical field in the theory. Further,
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–1

–0.5

0

0.5

1

Y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X

Figure 3: A sample of phase plane trajectories for the DGP cosmology with positive and negative

bulk black holes masses for the SA branch solution. We have taken σ = 0 for this plot. The red circle

(of radius one) represents the µ̂ = 0 or standard DGP cosmology. The green plots are with negative

bulk black hole masses (µ̂ = −1/3,−2/3,−1,−3/2), and the blue plots correspond to positive bulk

black hole masses (µ̂ = 1/3, 1, 9, 500). Note that for µ̂ ≥ 1, the trajectories terminate on the pressure

singularity (described in the text) which corresponds to the solid black circle at X2 + Y 2 = 1/2.

Similarly trajectories with µ̂ < −1 asymptote to (X, Y ) → (+∞,±∞), corresponding to reaching

the singularity at a = 0.

on the SA brane, since the radion is always either a ghost or a tachyon, it is expected to

be associated with an instability. Indeed, in the appendix we will show that at distances

much greater than the gravitational radius µ of the bulk mass m, where we can trust

linearized gravitational fields in the bulk, the bulk mass parameter is completely encoded

by the nontrivial radion configuration. The mass is zero if the radion vanishes, and its

sign is determined by the sign of the radion. Now, on the N branch, the radion is not a

dynamical field in the theory, as it is not normalizable. Of course, this reflects the fact

that our full solutions on the N branch contain a black hole (or a naked singularity) at

the center of the bulk space. However, describing the latter requires the full nonlinear

gravity theory no matter how small µ is and so goes beyond a linearized analysis presented

in [14, 33]. Thus on the normal branch µ, and therefore the bulk mass m, can be regarded as

boundary conditions from the point of view of the linearized theory. This does not exclude

the possibility that µ may be changed by processes whose initial stages may be reliably

described within the perturbative approach of the linearized analysis, but the complete

evolution necessarily goes into a nonlinear regime. For example, one might consider a
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uniform spherical wave emitted from the brane with a small amplitude and then collapses

at the center of the bulk space to form a black hole.

While the above comments are largely observations about mathematics, we want to

comment that the physics is distinguished here between the SA and N branches. If we

consider generic local processes which result in transmitting energy off the brane into the

bulk, for the closed cosmology of the N branch, this energy simply disperses within the finite

spatial slices of the bulk geometry. In contrast, on the SA branch, the analogous processes

will generically send out some energy which ‘leaks out’ to infinity and so inevitably µ

decreases. Thus, on the SA branch, and in general in the presence of SA branes, even if we

start with a bulk geometry where µ = 0, we will be able to access µ 6= 0, and in particular

µ < 0. Further, given the discussion above, we should be able to describe this evolution

within the linearized theory as radion dynamics. In the bulk we can always go sufficiently

far from the SA brane that the linearized description will be valid, and so it is hard to

see how such processes can be avoided without a complete exclusion of SA branes. On

the other hand, if we ban naked singularities, such processes on N-branch will not create

configurations with µ < 0.

3.2 Positive black hole mass in the bulk and pressure singularities

We now consider the effect of a positive bulk mass (µ > 0). As we have just discussed, this

could be generated perturbatively by the radion on the SA branch, or through a nonper-

turbative altering of the boundary conditions on the N branch. Typical potentials (3.12)

for this case are shown in figure 2. For any value of µ, there are of course two branches

for the potential, one corresponding to the N branch (ǫ = −1), and one corresponding to

the SA branch (ǫ = +1). When µ is positive, the two branches connect to one another at

a singular point, indicated with the black dot.

Let us begin by looking at the SA branch (ǫ = +1). At this point it useful to consider

the phase plane plot given by figure 3. Here we are interested in positive bulk mass,

so we should turn our attention to the blue trajectories. These clearly split into two

families: connected trajectories and disconnected trajectories. The connected trajectories

correspond to small values of µ, and pass safely through the Y -axis. These trajectories

are qualitatively similar to the µ = 0 trajectory. A glance at the (+, 0) curve for the

potential (3.12) in figure 2 indicates the following generic behaviour: the brane falls in

from large a until it hits a bounce at some finite value ab and then expands back out again.

The trajectory is completely non-singular and the bounce occurs when the potential crosses

U = −1. It follows that

ab =
1

σ∗

[

1

2
+

σ∗
H0

−
√

1

4
+

σ∗
H0

− σ2∗µ

]1/2

(3.17)

Note that the brane always stays outside of the black hole horizon since ab ≥ µ1/2. It is

easy to see that ab increases as we increase µ, which agrees with our earlier statement that

the SA brane is repelled away from positive mass black holes. The repulsive effect of µ > 0

on the SA branch is expected given the analysis of the effective Friedmann equation (3.10)

in which a negative density radiation term appears with positive µ and ǫ = +1. However,

– 12 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
9

since we are keeping the exterior or asymptotic region of the black hole geometry (3.1) and,

at the same time, the brane has a negative effective tension, we cannot gain any futher

intuition by considering the global geometry.

The disconnected trajectories occur for larger values of µ, greater than some critical

value µ0, to be determined shortly. These trajectories terminate on the bold black circle in

figure 3, at which point the brane runs into/out of a pressure singularity. This point also

occurs precisely on the bold black dot on the (±,+) curve in figure 2. So what exactly is

going on? Suppose the brane is falling in from a large a. At some point it will reach the

black dot, at a critical value given by

ac =

[

µ

H2
0/4 + H0σ∗

]1/4

. (3.18)

For a < ac, the potential (3.12) is complex, so this regime is unphysical. As a → ac from

above, the potential terminates with an infinite slope at the black dot. At this point, ȧ

remains finite, but ä (and any higher derivatives) diverge.

We can confirm that this is a real physical singularity on the brane by calculating the

Ricci curvature for the induced metric, e.g.,

R = 6

(

ä

a
+

(

ȧ

a

)2

+
1

a2

)

, (3.19)

Clearly, this expression blows up at a = ac, since ä diverges as a → ac and so we have

a genuine singularity on the brane. This occurs at some finite radius which is otherwise

ordinary from the perspective of the bulk geometry. For a phenomenologically interesting

range of parameters ( e.g., the Schwarschild radius of the black hole is smaller than the

Hubble scale on the brane), ac is typically far outside of the bulk black hole event horizon,

as can be seen by comparing it with the bulk black hole horizon radius ah = µ1/2:

a4
h

a4
c

= µ
(

H2
0/4 + H0σ

∗) =
1

12π2

m

M5

(

M4
5

M4
4

+
σ

6M2
5 M2

4

)

. (3.20)

This singular behaviour observed above resembles certain ‘sudden’ cosmological sin-

gularities studied recently [40], induced by the diverging pressures on certain spacelike

hypersurfaces as opposed to diverging energy densities. In fact, these singularities are re-

ally reminiscent of the well known pressure divergences in the McVittie solution [41], which

describes the field of a spherically symmetric mass in an FRW universe. Here, we have the

field of a black hole, and the matter exterior to it is given by a thin brane. In the McVittie

case also, the singularity of the solution induced by the diverging pressure is spacelike, and

in the past extends well beyond the region where the black hole horizon of the fixed mass

would have been.

So, on the SA branch, when the black hole mass is small and positive (0 ≤ µ < µ0),

the brane follows a non-singular trajectory, falling in from large a, reaching a minimum

at the bounce ab, and expanding back out again. Here there is no pressure singularity

because for these values of µ the brane hits the bounce before it can reach the point where
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the singularity would occur. In other words, ab > ac. For larger values of the black hole

mass (µ > µ0), the situation is reversed: a brane falls in from large a and hits a pressure

singularity at ac before it gets the chance to bounce. This corresponds to the case ab < ac.

Clearly we can calculate the critical value,3 µ0 by setting ab = ac, and solving for µ,

µ0 =
1

H0

(σ∗ + H0/4)

(σ∗ + H0/2)2
. (3.21)

The behaviour on the N branch (ǫ = −1) is fairly similar. Without going into details,

we note that for small enough µ > 0, the behaviour is qualitatively the same as for µ = 0.

Glancing at the curve (−, 0) for the relevant potential in figure 2, we see that the brane

follows a non-singular trajectory, falling into some minimum radius and bouncing out again.

This time, the position of the bounce decreases as µ increases. This means that a N brane

is attracted towards a positive mass black hole. Of course, this is exactly in accord with

our intuition that there is now a black hole at the center of the bulk geometry which exerts

a gravitational attraction on the brane. Similarly, the appearance of an effective radiation

term (with a positive density) in the effective Friedmann equation (3.10) also reflects the

attractive effect of positive µ with ǫ = −1.

At large enough values of µ, the brane will once again run into a pressure singularity.

This corresponds to following the curve (−,+) in figure 2, hitting the singularity at the

black dot. For completeness, we note that on the N branch, there is in fact a third scenario.

This occurs for intermediate values of µ, and corresponds to the case where the (−,+) curve

in figure 2 crosses the line U = −1, but the black dot appears below the line. Then there

are two possibilities: either we have a bouncing trajectory with no singularity (as for small

µ), or we have a brane that flows out of the pressure singularity, expands out to a maximum

radius, and then contracts until it hits another pressure singularity. In addition, tuning µ

such that Umax = −1 also allows for special trajectories where the brane is static and sits

at a fixed radius corresponding to the maximum.

Although the pressure singularity occurs for large enough µ on both branches, the

effects are actually very different, depending on which branch (N or SA) you are on. To

see this, let us examine the nature of this pressure singularity more closely. Intuitively,

we expect that this singularity will be very dangerous because the pressure divergence will

yield to the perturbations of the fluid dominating the universe becoming superluminal.

Indeed, the speed of sound of such perturbations is given by c2
S = ∂p

∂ρ , which will behave as

c2
S ∼ p/ρ as p → ∞. To check this, we can use a relativistic field theory as a probe, and

ask what happens to its fluctuations as the universe approaches the singularity. Here we

use the formalism for studying small perturbations in closed FRW universes that has been

developed for inflation [42]. As in a simple recent application [43], we start with ∇2χ = 0,

expand the field χ in spherical harmonics Ynlm on S3 as χ =
∑

nlm χ(η)nYnlm, obeying
~∇2Ynlm = −(n2−1)Ynlm for n−1 ≥ l ≥ |m| where ~∇2 is the Laplacian on S3, transform to

the conformal time coordinate dη = dτ/a, and define the new field variable ξn = aχn. A

3The reader may note that equation (3.17) shows another critical value µ̃0 = (σ∗ + H0/4)/(H0σ
2
∗).

However, µ0 < µ̃0, and so the latter is not physically significant.
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straightforward calculation yields the equation governing the time evolution of a particular

radial quantum number n,

ξ′′n +
(

n2 − 1 − a′′

a

)

ξn = 0 , (3.22)

where the primes denote derivatives with respect to the conformal time η. Now, it is

easy to see that a′′

a = a2( ä
a + ȧ2

a2 ) in terms of the original time τ . Further, differentiating

equation (3.11) with respect to τ , we find ä = −1
2

∂U
∂a .

Now let us focus on what happens on the N branch. Consider the (−,+) curve for

the potential U(a) in figure 2. As we approach the singularity (represented by the black

dot), it is clear that the slope of potential is large and positive. It follows that as a → ac,
a′′

a → −∞ , which converts equation (3.22) into an harmonic oscillator with a huge mass,

for any value of the comoving momenta ∝ n. Therefore the singularity has the effect of

essentially decoupling the local dynamics of the field theory inhabiting the universe.

In contrast, on the SA branch, we can see from looking at the (+,+) curve in figure 2

that the slope of the potential becomes large and negative as we approach the singularity.

It follows that as a → ac,
a′′

a → +∞, indicating that a tremendous, exponential instability

sets in on all scales. Clearly, this applies to the physical mode χn = ξn/a as well, because

a remains finite throughout. Of course, this instability could lead to singularities when

small perturbations are introduced to the (homogenous) SA solutions on the bouncing

trajectories where ab is not much bigger than ac, since a′′

a still becomes very large near the

bounce.

3.3 Negative mass in the bulk

We now turn our attention to the case of a negative bulk mass (µ < 0). Of course,

typically we would not consider the bulk geometry (3.1) with µ < 0 because it contains

a naked singularity at r = 0. However, in our construction of the SA branch solutions,

we have excised the bulk geometry inside the brane world-volume and have kept only the

exterior. Hence this construction removes the singularity and produces a (potentially)

smooth solution for µ < 0 and ǫ = +1. Furthermore, such a solution can be generated

perturbatively by exciting a normalizable radion on the µ = 0 solution.

We can learn more about the types of SA solution that occur for negative bulk mass by

considering the green trajectories in the phase plane plot (figure 3). Again they are split

into two families: connected trajectories for small |µ|, and disconnected trajectories for

large |µ|. The connected trajectories correspond to the bounces, where the brane falls into

some minimum radius and bounces back out again. As |µ| increases, the minimum radius

actually decreases, so, as expected, we conclude that the negative mass has an attractive

effect on the SA brane. The disconnected trajectories correspond to |µ| > 1/H2
0 , when we

no longer have bounce solutions. The corresponding potential is given by the (+,−) curve

in figure 2. We can clearly see that now the brane approaches from infinity and ‘crashes’

into the singularity in the bulk at a = 0 (or the time reverse). Since a vanishes at this

point (while ȧ and ä remain finite), a singularity also appears from the brane perspective,

e.g., the Ricci curvature for the induced metric 3.19 diverges. Unfortunately as it stands,

the DGP model is inadequate to determine the subsequent evolution of the system. Some
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obvious, albeit naive possibilities are 1) that the trajectory simply terminates at a = 0 and

a naked singularity emerges in the bulk spacetime, or 2) that the trajectory might continue

on to negative values a, which could be interpreted as the brane passing through itself

(and the singularity) at the origin and emerging as an expanding brane with the opposite

orientation. It is noteworthy that at ‘early’ times when the brane is still at finite radius,

the solution is smooth and so defines sensible initial data.4 Hence even if the full evolution

seems to be singular, there is no obvious reason why these solutions should be ruled out as

physically unacceptable.

In contrast, on the N branch (ǫ = −1) if we take µ < 0, the N branch construction

will leave a naked singularity at the center of the bulk space, which makes the solutions

much less appealing. Nevertheless, one could easily imagine that we are shielded from this

singularity by the presence of another SA brane in this geometry, evolving concentrically

with the N brane. The latter would, of course, not effect the dynamics of the N brane,

which will always correspond to a bounce. This can be seen by considering the (−,−) curve

in figure 2. As |µ| increases, so does the minimum radius, and so the effect of a negative

mass is repulsive on the N branch, as one might have anticipated.

All of this brings us to our main conclusion: with the SA branes, the DGP model ad-

mits physically sensible solutions for which the five-dimensional energy can be arbitrarily

negative. That is, regarded as a five-dimensional theory of gravity and branes, the spec-

trum of the DGP model is unbounded from below. Having identified new negative energy

configurations, it is natural to think that these will be excited in both classical and quan-

tum processes. While finding explicit solutions which demonstrate the appearance of these

negative energy states in various dynamical processes is difficult, it remains reasonable to

assume that the theory should be unstable.

4. Bubbling SA branes

In considering possible instabilities and their description beyond perturbation theory, given

that the SA branes appear as the source of the ills in the theory, it is natural to look at tun-

neling processes in which the SA branes might be spontaneously created in the Minkowski

vacuum. In what follows we present a semiclassical calculation for such a process using stan-

dard techniques of Euclidean quantum gravity. With a straightforward application of these

techniques, we find that spontaneous nucleation of SA branes in the bulk is unsuppressed.

However, as we discuss below, these calculations are not without certain ambiguities. We

should also note that the processes considered here are complementary to the possible in-

stabilities revealed in the previous section since the calculations here are restricted to the

case µ = 0. It would be interesting to consider the interplay of these effects, which we leave

for another day.

4Beginning from this smooth initial data, the brane collapses to a = 0 and the resulting singularity can

be seen by asymptotic observers. Hence cosmic censorship is violated in DGP gravity. But perhaps this is

not so surprising given that the DGP branes do not satisfy any of the usual positive energy conditions [32],

as observed above.

– 16 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
9

We will now apply the standard instanton techniques for the description of tunneling

processes with Euclidean path integrals. The tunneling probability from one configuration

into another in an existing Lorentzian geometry to leading order is

P ∝ e−∆S/~ , (4.1)

where the instanton action ∆S is the difference of the Euclidean bounce and background

actions,

∆S = Sbounce − Sbackground . (4.2)

In analogy with particle mechanics, we refer to the Euclidean solution describing the ‘bubble

of SA brane’ at the center of five-dimensional flat space as the ‘bounce’. The Euclidean

action is given by

SE = −2M3
5

∫

bulk

√
gR − 4M3

5

∫

brane + ∞

√
γK −

∫

brane

√
γ

(

M2
4R− σ

)

, (4.3)

where in the second integral, we have indicated the integration of the extrinsic curvature

over asymptotic infinity. This is, of course, the standard Gibbons-Hawking term and in

the present case the net effect of the background subtraction will be to cancel this term

(which is otherwise divergent).

Upon Wick rotating to Euclidean signature, t → itE , the bulk space becomes simply

R
5

ds2 = dt2E + dr2 + r2dΩ2
3 , (4.4)

with a ball of the radius H+ removed and its surface identified with the Euclidean geometry

of the brane. Indeed, on the brane, τ → iτE converts the de Sitter geometry of the SA

branch to that of a four-sphere with

ds2 = dτ2
E +

1

H2
+

cos(H+τE)2 dΩ2
3 . (4.5)

The instanton describing tunneling from empty space to a space containing a single SA

brane will consist of one half of both of these geometries, but in squaring the wavefunction,

the tunnelling probability (4.1) requires the action for the full Euclidean bounce. Note, that

this construction is perfectly consistent with the Z2 orbifold condition. We can take two

5D Euclidean spaces with a ball removed, and the remaining spaces identified across the

spherical boundary, and then analytically continue to Lorentzian signature at the equator,

to get the SA brane. This will provide an ‘interior’ picture of the process, without any

reference to the embedding space. Clearly, we can also consider the processes where Z2

condition is lifted.

Now, to calculate the action for the bounce, we first use the Euclidean version of the

equations of motion (2.2), (2.3) to deduce that

R = 0, 4M3
5 K +

2

3
M2

4R− 4

3
σ = 0 , (4.6)
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where, as above, we have set all the matter contributions on the brane, except the tension,

to zero. Hence the Euclidean action (4.3) for the instanton reduces to

Sbounce = −1

3

∫

brane

√
γ

(

M2
4R + σ

)

− 4M3
5

∫

∞

√
γK . (4.7)

Plugging in the spherical geometry (4.5) above yields

Sbounce = − 1

3H3
+

∫

dΩ3

∫ π
2H+

− π
2H+

dτE cos(H+τE)3
(

12M2
4 H2

+ + σ
)

− 4M3
5

∫

∞

√
γK

= − 8π2

9H4
+

(

12M2
4 H2

+ + σ
)

− 4M3
5

∫

∞

√
γK . (4.8)

Now we must also consider the background contribution to the instanton action (4.2). The

background spacetime is simply flat space and so the only contribution to the action is the

asymptotic integral of the extrinsic curvature, precisely cancelling the second term in (4.8).

Thus the final result for (4.2) is

∆S = − 8π2

9H4
+

(

12M2
4 H2

+ + σ
)

= − 8π2

3H4
+

(

8M3
5 H+ + σ

)

. (4.9)

We immediately note that that the sign of either of these expressions is obviously negative

for positive tension, σ > 0. Hence this action provides no suppression for the tunneling

probability (4.1)!

Our interpretation of this result is certainly not that the tunneling probability is greater

than one, but rather that the saddle-point approximation implicit in (4.1) is not a good one.

A more careful analysis would be required to properly evaluate the tunneling probability.

However, what is clear is that the breakdown of the saddle-point approximation implies

that the tunneling is not strongly suppressed and so there is large mixing between the

empty five-dimensional spacetime and that containing a SA brane. By extension, one can

infer that there is a large mixing between all of the five-dimensional spaces containing

any number of SA branes. Hence we are led to conclude that empty five-dimensional

Minkowski space does not provide a good description of the quantum vacuum of the five-

dimensional theory. Note that while this conclusion is in agreement with that found in the

previous section, the present calculations are restricted to the zero-energy sector and make

no reference to the negative energy states found previously.

Of course, it must be said that this rather dramatic conclusion hinges crucially on the

sign of the Euclidean action in (4.9). At the same time, there has been a long-standing de-

bate in the quantum cosmology literature [46 – 48] centered on precisely this sign. While we

have nothing new to add to that debate, we would point out that there are significant differ-

ences between the setting of quantum cosmology5 and the present description of nucleating

SA branes. Interpretational ambiguities are naturally present in quantum cosmology where

one considers the quantum birth of a whole closed universe from ‘nothing’. In contrast, in

5The sign ambiguity reappears in the present context when considering the N branch, in which the

solutions correspond to closed five-dimensional universes. If one evaluates the Euclidean action (4.3) for a
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the setting describing the nucleation of SA branes, we have a standard tunneling process

describing the formation of a ‘defect’ in a larger empty spacetime, which serves as a fixed

background. Hence we can take it as the usual background describing a metastable state,

in which a tunneling process starts, and where the positivity of energy is defined by the

ghost-free N-branch configurations. In this way we do not face the same interpretational

issues as in the case of ‘tunneling from nothing’. Although such interpretational issues

are absent, this still does not guarantee the sign of the action in the tunneling amplitude.

Indeed in a similar calculation, ref. [44] advocated the opposite sign to that chosen in (4.9)

— however, we note that the discussion there overlooked the boundary contribution of

the Gibbons-Hawking term, as well as focussing on hypothetical brane embeddings with

Kµν = 0.

Let us consider then various choices for an unconventional analytic continuation in the

path integral. The first and simplest choice would be choosing the opposite sign for the

entire action, i.e., yielding P ∝ e−|∆S|. However, in this case, we are implicitly applying the

same unconventional continuation both to the saddle-point with the spherical Euclidean

brane and to that for empty flat space. The latter seems rather problematic and so it is

doubtful that this can be the correct choice for the continuation. As a compromise then, we

could simply choose the conventional continuation for empty space and choose the opposite

sign for the nontrivial saddle-point. However, in this case, the boundary terms will not

cancel between the two solutions and so resulting ∆S is divergent. Hence this approach is

also problematic. The final alternative which we consider here is that the unconventional

continuation would only be applied to the brane action, i.e., we would only reverse the

sign of the brane contributions in (4.3). This choice may seem natural since the SA branes

have already been identified as the source of problems in DGP gravity and further this

continuation leads to a finite positive ∆S. However, in this case, the analysis above must

be reconsidered. In particular, the sign of the brane terms in the Euclidean equations of

motion are also reversed and so the tunneling instanton will contain a Euclidean brane

of radius 1/H−, rather than 1/H+ as above – recall H± are defined in (2.7). Hence, this

approach does not seem to produce a consistent description of the tunneling event, in which

the Euclidean brane naturally connects to the SA brane in Lorentzian signature. Hence,

while we can not at present guarantee that the tunneling calculation does not require an

unconventional analytic continuation, we would say that straightforward calculation of the

Euclidean action seems the most appropriate choice.

It would be interesting to address this question using Hamiltonian techniques, such as

in [49]. In a problem with some elements in common with the present case, this approach

hemispherical brane, the Hartle-Hawking wavefunction for this closed universe becomes exp[−SHH ] with

SHH = −

4π2

9H4
−

`

12M2
4 H2

− + σ
´

= −

4π2

3H4
−

`

σ − 8M3
5 H−

´

. (4.10)

Note that the sign is again negative, as is standard for the Hartle-Hawking wavefunction [47], but alternate

approaches would flip this sign [46, 48]. Note that taking the limit M3
5 → 0 in the second expression above,

reproduces the standard result for four-dimensional Einstein gravity coupled to a cosmological constant Λ:

SHH = −2π2Λ/3H4 where H = σ/6M2
4 and Λ = σ/2.
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was recently used to argue the — perhaps — surprising result that the nucleation of domain

walls comprised of ghost matter should be suppressed [50]. But we would also note that

at least in certain situations, applying such Hamiltonian techniques to quantum gravity is

known to produce erroneous results [51].

We must comment, however, that the conventional analytic continuation for the tun-

neling calculation is not free of further technical complications, as we now describe: The

Euclidean instanton calculation above could possibly describe a number of different pro-

cesses: i) decay of five-dimensional Minkowski space by the spontaneous creation of a SA

brane; ii) the decay of a SA brane into empty five-dimensional space; or iii) a mixing

between two distinguished components of the wave-function over five-dimensional geome-

tries, in the sense of quantum gravity. To distinguish between these different possibilities in

the saddle-point approximation, one may evaluate the fluctuation determinant around the

tunneling solution and determine the number of negative eigenvalues. This computation

is complicated in the present situation both by the breakdown of the saddle-point approx-

imation and by the fact that the Lorentzian analysis of the fluctuations around the SA

brane indicates the presence of a negative energy ghost. Hence we may expect an infinite

number of negative eigenmodes for the bounce solutions. A more careful analysis would

be required to determine which of the processes listed above is really relevant. Above, we

have simply referred to the process as ‘mixing’ or ‘tunneling’ in some general sense. In any

event, we expect this quantum tunneling to strongly modify the classical physics, described

by the simple solutions discussed, e.g., in section 2. Note, however, that this result may in

fact be an indication of the presence of ghosts beyond linear perturbation theory. Indeed,

we may follow the converse argument, which simply tells us that since the saddle point

approximation breaks down, there should be unstable directions in the phase space of the

system. This would then suggest that the strong coupling effects, argued to be important

in perturbation theory [17], may not remove the ghost on their own, as long as they leave

the self-accelerating solutions in the spectrum.

Another interesting complication arises with the ‘wormhole’ interpretation of the SA

branes mentioned above. Here some further refinement is required in specifying the precise

tunneling geometry. Again, the conventional configuration implicitly has the SA brane

connecting two disjoint Minkowski spaces. Given two parallel Minkowski spaces, instantons

could be constructed in which a SA brane appears in each of the two spaces, but there

are two other instantons for which both sides of the SA brane appear in either one of

the Minkowski spaces. Hence quantum tunneling seems to naturally lead us to think

about configurations where the SA brane connects distant locations within the same five-

dimensional space and so makes their role as a ‘wormhole’ evident. The path integral

leading to the probability (4.1) would also include an integral over the position of the

instanton. In a conventional setting this would produce a factor of the volume of the five-

dimensional space. This result is regulated by dividing out this factor to yield a probability

per unit time and per unit spatial volume. However, in the situation where the instanton

creates a Lorentzian wormhole, there would be in fact an integral over the position of

both sides of the wormhole yielding two volume factors. In this case then, the result still

diverges if one asks for the probability that a SA brane appear at given position and time
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in the five-dimensional space. Thus the interpretation of these instantons appears less

straightforward than usual. Of course, both of these complications are again eliminated if

the branes are defined to be Z2-orbifolds, in which case there is only one side to the branes.

As a consequence of this tunneling processes (irrespective of the sign issues above),

we are naturally led to consider a five-dimensional space with a single asymptotic region

that contains more than one SA brane (or a single wormhole). At some point in the

future evolution of these solutions, the branes will collide with each other. Similarly, SA

branes created inside a N brane universe will typically lead to a collision between the two

branes, i.e., the self-accelerating brane ‘crashing’ into the normal brane. Clearly, unless the

tunnelling rates found above can be suppressed in some way, this issue remains secondary,

since the sheer proliferation of the SA branes, which gobble up space like Witten’s ‘bubbles

of nothing’ [45] (even though there may be no ‘nothing’ here when we impose Z2 symmetry),

will end up completely destroying the bulk environment.

Above we considered tunneling processes in which a SA brane is nucleated in empty

five-dimensional Minkowski space. This process would allow the quantum creation of such

a brane in any region of Minkowki space. In particular, consider the N-branch where

the brane encloses a region of Minkowski space with finite spatial extent, as described in

section 2. The minimum radius of this region (at t = 0) is H−1
− , which also corresponds

to the size of the corresponding Euclidean solution. Similarly the minimum radius of

the SA brane (or maximum radius for the Euclidean bounce solution described above) is

H−1
+ < H−1

− . Hence it is easy to fit a SA brane worldvolume inside that of a N brane, for

a fixed value of the tension, σ. Given the latter fact, it is straightforward to extend the

above calculations for the spontaneous appearance of SA branes in the bulk space enclosed

by a N brane. In fact, ∆S is precisely the same as given in (4.9) and so the conclusions

are the same for this case.

To close this section, we list some more exotic possibilities for tunneling processes.

First off, for µ < 0 there is a very interesting possibility for mixing between unregulated

bulks with naked singularities and their regulated variants involving SA branes. The brane

trajectories will come from a Wick-rotated version of (3.11) and will have a smooth intrinsic

geometry, even though they close off at the singularity. However, near the singularity their

extrinsic curvature must diverge. If we were to ignore the action on the singularity we would

expect to find a finite negative action. Clearly, this answer would be sensitive to higher

order corrections and hence unreliable. Yet, we would expect in general that solutions

with large negative actions should exist, again yielding strong mixing, and allowing for a

formation of a naked singularity. Note, that the usual positive energy theorems [32], which

normally enforce cosmic censorship, do not apply in the DGP model.

For the case µ > 0 we would expect that nonperturbative processes describing bulk

black hole formation are possible on the N branch. These however may be suppressed by

the thermodynamic factors which do apply on the normal branch, in the bulk. Another

possibility would involve transitions between collapsing solutions that would bounce to

those which crunch, and back. Without a precise calculation of the solutions it is not clear

what the significance of this instanton is. Indeed, for sufficiently small µ > 0 there are no

crunching, confined trajectories to begin with.

– 21 –



J
H
E
P
1
0
(
2
0
0
7
)
0
6
9

5. Discussion

The DGP model originally captured the attention of theoretical physicists by offering an

explanation of the cosmic acceleration that was distinct from the standard one with a

cosmological constant. An important element of the model was seen to be its internal

consistency. However, recently flaws in this consistency have emerged. A detailed analysis

of the perturbative fluctuations revealed that the spectrum of the self-accelerating solutions

contain ghost-like and tachyonic excitations [14]. In the present paper, we have taken a

new perspective on the model and rather than focus on the four-dimensional physics of the

branes, we have studied the theory from a five-dimensional point of view. With this new

perspective, simple calculations straightforwardly led us to see a number of new pathologies

of the DGP model.

One simple observation in section 2 was that the conventional SA brane connecting

two asymptotically flat regions can be regarded a ‘wormhole’. As such, DGP gravity faces

certain problems which are inherent to such wormhole configurations [19]. One issue that

is often discussed in this context is the necessity for negative energy densities to support a

wormhole. As was also discussed in section 2, the effective stress tensor (2.8) of the DGP

branes does not satisfy any positive energy conditions and in fact, the SA brane behaves

as a brane with a negative effective tension. Another issue that arises with wormholes

is the possible appearance of closed time-like curves (CTC’s). Here one must note that

the present wormholes differ from those conventionally discussed [19] since the size of the

wormhole throat is not fixed, i.e., the brane follows a hyperbolic trajectory in Minkowski

space. However, it is straightforward to show that this dynamic behaviour does not prevent

the appearance of CTC’s. In section 4, we also found that the wormhole geometries lead

to additional divergences in the semiclassical tunneling calculations. Of course, all of these

problems are eliminated if the DGP branes are Z2-orbifolds, in which case, the brane is

actually a boundary of the five-dimensional spacetime.

In section 3, we provided a construction of SA solutions where the five-dimensional

energy was arbitrarily negative. While these solutions are singular at a = 0 for a sufficiently

large and negative energy, they still admit well-behaved smooth initial data and so there do

not appear to be any obvious reasons not to include these solutions. The appearance of a

singularity is simply a shortcoming of the model and a reminder that we are working with

an low energy effective theory. Hence our conclusion is that regarded as a five-dimensional

theory of gravity and branes, the spectrum of the DGP model is unbounded from below.

This reinforces the expectation developed from the fluctuation analysis [14] that the SA

brane should be unstable to decay by both classical and quantum processes. In particular,

we have found explicitly (see the appendix) that the negative mass configurations can be

smoothly attained by classical radion variation from SA branes. Hence one can regard the

solutions in section 3 as nonperturbative excitation of the normalizable radion mode, going

beyond the original linearized analysis and extending the associated instability to the fully

nonlinear regime of the theory.

As our construction in section 3 shows the addition of DGP branes to the five-

dimensional Einstein gravity has allowed the theory to resolve the singularity of negative
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mass Schwarzschild solution. From the point of view of a quantum gravity, this was long

ago argued to be a disaster for the theory [52], for essentially the same reasons as elaborated

above. Namely, the complete theory would admit negative energy states and the empty

space would no longer be a stable vacuum. One might wonder if there might be some

super-selection rules that keep the energy positive. After all, for desired phenomenological

application, one needs SA branes which are really big, even with negative energy, and so

might be hard to produce. But the tunneling calculation, and classical radion evolution

seem to support that the opposite is true, and that the system will probe arbitraily low

energies.

While the explicit constructions of section 3 are very symmetric, it is clear that they

only represent a small corner of a vast space of negative energy solutions. The key point

is that in the approach elucidated in section 2, the SA brane excises a finite region at the

center of the five-dimensional bulk and so one can allow any manner of singularities there.

A simple extension of our symmetric solutions would be to choose the bulk geometry as

a negative mass Schwarzschild but to position the singularity away from the center of the

space and closer to the minimum radius reached by the brane. Determining the precise

trajectory of the SA brane would be computationally a more complicated task but it seems

clear that the result will be a negative energy solution where, rather than being uniformly

spread, the excitation is localized in one region of the brane. Ergo, inhomogeneities with

arbitrarily negative energies should also form. Based on this and the connection to the

perturbative analysis, one should expect that to encode such modes there should be non-

linear solutions which represent excitations of the higher unstable modes as well, i.e., ghost

or tachyon modes with nontrivial angular momentum on the three-sphere.

It is interesting to contrast our present results on negative energy states with previous

observations of effective negative energies associated with matter configurations on SA

branes [53, 54]. In both cases, these nonlinear solutions showed behaviour corresponding to

a negative energy density at some intermediate scale. However, this effect is not indicative

of the overall mass or energy measured at asymptotic distance scales. In the case of the

domain walls [54] — see also [24] – where the full five-dimensional solution is known, one

clearly sees that the 5D wormhole geometry of the SA brane screens the effective negative

energy. That is, since the asymptotic geometry is simply 5D Minkowski space, from the

five-dimensional perspective advocated here, we see that these configurations correspond to

precisely zero energy states. It is still interesting to ask if these effective negative energies

appearing at intermediate scales can produce instabilities through some local processes on

the brane. However, we would argue that this is unlikely to be the case. By considering

domain walls connecting regions with different brane tensions, it is clear that the negative

energy is screened on the scale set by the size of the bubble surrounded by the domain

wall.6 Hence it seems that this screening will prevent the formation of such bubbles in

dynamical processes.

In section 3, we also saw how a positive energy bulk would lead to problems of a very

6The solutions given in [54] describe bubbles of the size of the cosmological horizon. By considering

the analogous constructions with domain walls separating regions with different brane tensions, we find

solutions where the size of the bubble is disentangled from the horizon scale.
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different nature. Again, as shown in the appendix, one can easily generate a positive mass

in the bulk by exciting the radion on the SA background. Typically, the cosmological

solutions we found run into a pressure singularity on the brane, at some finite value of

the scale factor. This represents an absolutely disastrous instability on the SA branes, as

can be seen by considering the evolution of a scalar field on the brane. As the pressure

diverges, so the scalar field starts to behave as if it has a diverging tachyonic mass on all

scales! The pressure singularity can also appear for a positive energy bulk on the N branch,

but in that case the scalar field picks up a diverging positive mass, and simply decouples

from the dynamics of the universe.

Yet another pathology came from standard semi-classical calculations showing that

there should be a rapid spontaneous creation of SA branes in any region of five-dimensional

Minkowski space. Of course, as discussed in the previous section, these calculations are

not free of various ambiguities inherent in the Euclidean path integral in quantum gravity.

However, having alerted the reader to these caveats, we continue to consider the implica-

tions of the results. Note that these explicit calculations are restricted to the zero-energy

sector of the five-dimensional theory. Hence this instability is complementary to the in-

stabilities which one would expect to arise from negative energies discussed above. In any

event, these results suggest that empty five-dimensional Minkowski space is not the vac-

uum and not even close to the vacuum of the DGP model as a five-dimensional theory of

gravity. Of course, this is a disturbing result that calls into question any intuition or results

derived from classical solutions in the DGP theory. In particular, it casts serious doubt on

the SA solutions, which are really the reason behind these pathologies. Interestingly, this

is reminiscent of the situation encountered in higher derivative gravities in 4D, where clas-

sical de Sitter solutions supported by higher derivative terms were also linked to vacuum

instabilities [55]. There, a cure which was devised was to exclude such configurations from

the allowed set of solutions of the theory.

Hence what are we to conclude from these results? In fact, the only firm conclusion we

wish to draw is that as a theory of five-dimensional gravity the DGP model is not consistent,

as it displays some severe pathologies. We must remind ourselves, however, that this model

is only a low-energy effective model and not a complete theory of gravity or other physics.

As we noted above, we are readily reminded of this status by the appearance of spacetime

singularities from rather generic and uneventful initial data. Could it be then that the DGP

model has a UV completion, which evades all of the problems which we have elucidated

here? While this may seem a rather unlikely eventuality, let us point out a few simple

examples where in fact this might be the case.

The first example is provided by [56], which was motivated by the appearance of

negative-tension branes in the original Randall-Sundrum model [61]. Of course, the latter

have some obvious instabilities that were eliminated by invoking a Z2-orbifold boundary

condition. The authors of [56] found a new dynamical instability, which applied even with

this boundary condition, by studying black holes falling in on negative tension branes from

the bulk. This process was found to produce a catastrophic ‘big crunch’ singularity which

caused the entire bulk space to collapse. However, they also observed that, if the negative

tension brane in the RS model is actually realized by an orientifold of a higher dimensional
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geometry in a string theory construction, then this instability should not be expected to

arise. That is, this pathology of the RS model is only a pathology of the low energy

description and so would not play a role in a string theory realization of the same physics.

As a second example, we address directly one of our DGP pathologies, albeit not with

a UV completion of the model. Imagine extending (2.1) by adding the following Gauss-

Bonnet term7 to the brane action:

β

128π2

∫

brane

√−γ
(

RµνρσRµνρσ − 4RµνRµν + R2
)

(5.1)

where β is a dimensionless constant. In fact, the effect below could be accomplished

by adding any term involving squares of the intrinsic curvature. A generic term would,

however, modify the behaviour of gravity on the brane at short (and long) distances and

also lead to new ghost excitations in the UV. Both of these complications could be evaded

with the Gauss-Bonnet term (5.1), which because of its topological nature does not effect

the dynamics. However, if this term is carried through the calculations of section 4, the

final result would be that ∆S is shifted by a constant, i.e., (4.9) is replaced by

∆S′ = − 8π2

9H4
+

(

12M2
4 H2

+ + σ
)

+ β . (5.2)

Since the standard contribution is determined by the microscopic parameters, M5, M4 and

σ, once these are fixed to produce a certain dynamics, we have the freedom to tune β to a

sufficiently large positive value so that ∆S′ > 0. As a result, the rapid spontaneous creation

of SA branes would be suppressed and so this pathology would be removed. While it may

seem unnatural that β should have to be tuned in this way rather than simply being O(1)

(or perhaps O(128π2) given our normalization), we would point out that the DGP model

already required a certain amount of fine-tuning, e.g., in the ratio M5/M4 to produce a

phenomenologically viable model. So while we have not addressed the question of a UV

completion, we have alluded to a theoretical mechanism which may suppress8 the tunneling

processes9 considered in section 4. We should also mention, that in principle one might also

seek to suppress the nucleation of SA branes, or exclude this channel altogether, in a similar

vain as the Witten’s bubbles of nothing are suppressed in the usual KK compactification.

This can be done by adding other bulk degrees of freedom, for example fermions, that will

twist nontrivially in a bulk with an SA brane, by seeking boundary conditions sensitive to

the extrinsic curvature. Such terms could, at least in principle, change the action of the

Euclidean SA configuration. It would be interesting to explore this in more detail.

7Gauss-Bonnet terms in the bulk have been widely explored in various braneworls setups [57]. Here we

only add them to the brane action, and not in the bulk. Thus they are purely topological, being relevant

only for the quantum dynamics of the theory.
8Recall that any tunneling at all gives rise to configurations where SA branes will collide.
9Having pointed to a positive influence of a Gauss-Bonnet term, we should also reiterate the concern

about the theory where the regularity of the solutions found from analyzing leading order terms in the

derivative expansion is so sensitive to the inclusion of higher-dimension operators, on the brane or in the

bulk. This, in the very least, underlies the importance of designing a UV completion before jumping to

phenomenological applications of the solutions of the theory at the present stage.
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Our discussion then brings to the fore the importance of finding a proper UV comple-

tion for the DGP model. While there are claims that DGP gravity can be realized in certain

string theory constructions [58, 59] — see also [27] — more recent analyses yielded the ar-

gument that in fact it would be impossible to find a UV completion for this model [29].10

Clearly it is very important to resolve this issue and in fact, at present, this seems to be

the most pressing question to be addressed with respect to DGP gravity. We contrast this

situation with that of, e.g., Randall-Sundrum ‘gravity’ [61]. The RS model is known to

suffer from gravitational instabilities involving unstabilized negative tension branes. How-

ever, the basic five-dimensional model still serves as a useful testing ground for new ideas

in particle phenomenology (for reviews see [62]), which stay away from the complications

of gravitational nonlinearities. Moreover, with the development of the stabilizing mecha-

nisms [64], the instabilities can be put under control at low energies. Further in the RS

case, we can rest assured that string theory provides consistent constructions [63] which

produce very similar physics to the simple five-dimensional models and which evade the

problems found in the low energy effective theory. On the other hand, the DGP model was

constructed precisely as a testing ground for new gravitational physics and although our

discussions address nonlinear instabilities, we know that these instabilities link up with

the ghost problems found in the linear theory [14]. Hence one must object that in its

present form the DGP model does not provide a consistent framework to test new grav-

itational ideas, as long as it permits ‘unchecked’ SA branes. Thus we re-iterate that the

most pressing question to resolve about DGP gravity is whether a UV completion exists,

and, if so, what are the UV characteristics of the theory. For example, perhaps a sensible

UV completion can guide us to make some simple modifications of the original DGP model

which will ameliorate the problems discussed above. In any event, the present discussion

reinforces that it is premature to use the DGP model to develop any detailed cosmological

tests.

Going beyond the DGP model, we note that the perspective and analysis that we ap-

plied here can be utilized broadly in many other braneworld extensions of four-dimensional

Einstein gravity. Examples which combine DGP and RS features were studied in, e.g.,

[5, 20]. Our approach would give a quick diagnostic of the consistency of such models.

One expects that in the realizations which contain perturbative ghosts and SA branches,

similar negative energy problems and singular evolutions will arise. It would be interest-

ing to check this explicitly. Also, it would be interesting to explore higher-codimension

models with brane localized terms. Such models have been recently investigated in [65],

where a construction without ghosts was provided. Yet it appears that for some boundary

conditions on the brane a nonlinear analysis as in section 3 may yield negative energy

solutions. Finding out the precise link of these configurations could shed more light on the

interconnectednes of perturbative ghosts and possible instabilities. Ultimately, learning

more about such problems may give us an opportunity to test the robustness of Gen-

eral Relativity. While seeking modified gravities is an interesting endavour which may be

motivated by various cosmological and phenomenological problems, it’s also a dangerous

10The applicability of this analysis to DGP gravity was subsequently called into question in [60].
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venture. Without a reasonable UV completion to guide us, many of these models will

simply provide pathological theories that do not have well behaved low energy limits, and

remain altogether unreliable. Yet, at this time we still do not know for a fact if the suc-

cesses of General Relativity really require General Relativity, or might be reproduced by

a more exotic structure. Searching for more clues to point us either way thus remains an

interesting effort.
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A. The radion and the Schwarzschild bulk

In section 3 we examined in some detail the behavior of a brane embedded in a bulk

Schwarzschild geometry. For very small values of the black hole mass, we observed that the

bulk geometry is only slightly deformed from flat space11 (2.4) and the brane trajectory

is only slightly perturbed from the standard cosmology (2.6). Hence in this regime, we

should be able to connect the new solutions of section 3 with the fluctuation analysis

of [14, 33]. We commented above and will demonstrate here with a detailed calculation that

the small µ perturbation corresponds to the homogeneous mode of the radion, as studied

in [14, 33]. Further, we observe that on the self-accelerating branch, these perturbations

are normalizable, whereas on the normal branch they are not. Perhaps this is not surprising

since the normalizable radion decouples on the normal branch, but not on the SA branch.

Before embarking on the detailed calculation, let us note that the radion field roughly

measures fluctuations in the brane’s position in the bulk. In going from a Minkowski bulk

to a Schwarzschild bulk, we would expect the brane to respond by being drawn towards

the black hole, and so clearly the radion field will be excited first and foremost. Secondly,

on the self accelerating branch the black hole has itself been cut out, only leaving its long

range fields in the asymptotic region. This means that the boundary conditions ‘deep

inside the bulk’ correspond to boundary conditions in asymptotically flat space, i.e., they

11As noted below, this only really applies on the SA branch.
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are identical to those for a five-dimensional Minkowski bulk geometry. Therefore, the

Schwarzschild solution must correspond to a normalizable perturbation. Of course, this

is not so on the normal branch, which retains the interior region. Hence in that case

the boundary conditions deep inside the bulk differ: for the Schwarzschild bulk, we have

a black hole while with a Minkowski bulk, we simply have empty flat space. Therefore,

the Schwarzschild solution on the normal branch must correspond to a non-normalizable

perturbation, which simply means that this mode enters the nonlinear regime deep in the

bulk.

We will now elaborate our claims with an explicit calculation. When the mass param-

eter, µ, is small, the bulk solution (3.1), and the brane equation of motion (3.9) clearly

correspond to vacuum perturbations about the background solutions with a Minkowski

bulk (µ = 0). Linearizing in µ, the bulk solution (3.1) becomes

ds2 = ds̄2 +
µ

r2
(dt2 + dr2) + O(µ2) (A.1)

where ds̄2 is the background Minkowski metric (2.4), written in global coordinates. We

now change to a de Sitter slicing of Minkowski by introducing new coordinates as follows

r =
eǫHy

H
cosh(Hτ) , t =

eǫHy

H
sinh(Hτ) . (A.2)

The background bulk metric now takes the form given in [14, 33]

ds̄2 = e2ǫHy
[

dy2 + γ̄µνdxµdxν
]

, (A.3)

where γ̄µν is a spherical slicing of 4D de Sitter (see equations (2.5) and (2.6)), and ǫ = ±1

depending on whether we are on the N branch (ǫ = −1) or the SA branch (ǫ = +1).

Using (A.1), the Schwarzschild geometry now corresponds to a perturbation of the

form

δgyy = δgττ = µH2(1 + tanh2(Hτ)), δgyτ = 2µH2 tanh(Hτ), (A.4)

and δgab = 0 otherwise. In [14, 33], we predominantly worked in Gaussian-Normal (GN)

gauge, for which, δgay = 0. Since we wish to identify the Schwarzschild bulk with vacuum

perturbations appearing in [14, 33], it is therefore convenient to transform to GN gauge as

follows

y → y + η, xµ → xµ + ξµ (A.5)

where

η = −µ

2
ǫHe−2ǫHy

[

1 + tanh2(Hτ)
]

(A.6)

ξµ =
µ

4
e−2ǫHyDµ

[

tanh2(Hτ) + 4 ln(cosh(Hτ))
]

(A.7)

Here Dµ is the covariant derivative for the 4D de Sitter metric, γ̄µν . The metric perturba-

tion now takes the form given in [14, 33]

δgay = 0, δgµν = eǫHy/2hµν(x, y) (A.8)
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where

hµν(x, y) =
[

DµDν + H2γ̄µν

]

φ(x, y), φ(x, y) = e−ǫHy/2φ̂(τ), (A.9)

φ̂(τ) = −µH sinh(Hτ)

∫ τ dλ

cosh3(Hλ) sinh2(Hλ)
(A.10)

It is easy to check that (D2+4H2)φ̂(τ) = 0, which means that hµν(x, y) is transverse-trace-

free. Indeed, if we compare this with the perturbations given in [14, 33], we see that the

mode φ(x, y) can indeed be identified as the radion. On the SA-branch (ǫ = +1), the mode

decays for large y, and is therefore normalizable. In contrast, on the N branch (ǫ = −1),

the mode grows for large y and is not normalizable!

It may come as a surprise that both the radion field (A.10) and the energy of the

solution (3.3) are linear in the Schwarzschild mass parameter µ. Examining the effective

lagrangian (3.71) of [14], one sees that it is quadratic in the radion, to leading order.

Hence the naive expectation would be that the Hamiltonian is also quadratic, as opposed

to linear, in µ. Without going into any great detail, the source of this ‘discrepancy’ is

the fact that the background solution is time-dependent. That is, even though the bulk

spacetime (2.4) has a Killing time,12 the embedding of the standard SA brane does not

respect this symmetry. Given this time dependence, in fact, we should in general expect

that the Hamiltonian is linear in perturbations about the background. This is most easily

illustrated with the simple example of a classical mechanics problem with H = p q̇ − L.

If we perturb about a specific solution (p0, q0), it is a straightforward calculation to show

that in general δH = q̇0 δp − ṗ0 δq. Hence unless the background solution is static, we

should expect the shift in the energy to be linear in the perturbations. Of course, the

same analysis should apply directly to the present problem with perturbations around the

standard cosmology of SA brane (with µ = 0).

In summary we have confirmed our naive expectations: namely that a Schwarzschild

bulk corresponds to a normalisable radion on the SA branch, and a non-normalizable

radion on the N branch.
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